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Abstract— Although adversarial training (AT) is regarded as a
potential defense against backdoor attacks, AT and its variants
have only yielded unsatisfactory results or have even inversely
strengthened backdoor attacks. The large discrepancy between
expectations and reality motivates us to thoroughly evaluate
the effectiveness of AT against backdoor attacks across various
settings for AT and backdoor attacks. We find that the type
and budget of perturbations used in AT are important, and
AT with common perturbations is only effective for certain
backdoor trigger patterns. Based on these empirical findings,
we present some practical suggestions for backdoor defense,
including relaxed adversarial perturbation and composite AT.
This work not only boosts our confidence in AT’s ability to defend
against backdoor attacks but also provides some important
insights for future research.

Index Terms— Adversarial training (AT), backdoor attack,
deep learning, robustness.

I. INTRODUCTION

AS DEEP neural networks (DNNs) require massive
amounts of data, practitioners have to crawl images and

labels from websites, which brings practical risks such as
backdoor attacks [7], [10], [12], [17], [18], [19]. Specifically,
an adversary could easily backdoor a classifier via poisoning a
small amount of training data, i.e., injecting a trigger on a few
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training data and (sometimes) relabeling them as a predefined
class. As a result, the backdoored model would always
misclassify an image into a target class in the presence of the
trigger pattern, while it behaves normally on benign images.
For example, it has been illustrated that one could use a sticker
as the trigger to mislead a road sign classifier to identify “stop”
signs to “speed limited” signs [12]. Since backdoor attacks
bring remarkable threats to safety-critical applications such as
autonomous driving [8] and smart healthcare [1], it is urgent
to defend against such attacks during training [5], [14], [32].

Recently, adversarial training (AT) [11], [23] is believed to
be a potential solution [37] to backdoor vulnerability because
an adversarially trained model could keep the prediction
unchanged even if the input image is perturbed. Specifically,
AT formulates a minimax optimization

min
θ

n∑
i=1

max
x ′i∈B(xi )

ℓ
(

fθ
(
x ′i

)
, yi

)
(1)

where x ′i is the adversarial example (the worst case) within
a feasible range B(xi ), fθ (·) is the DNN with parameters
θ , and ℓ(·) is the standard classification loss (e.g., the
cross-entropy loss). Unfortunately, previous studies only
achieved unsatisfactory performance [9] or even claimed
that AT strengthens backdoor vulnerability [33]. Considering
AT is proven to be severely affected by the experimental
settings [26], we conjecture the large discrepancy between
expectation and reality is due to inadequate experimental
settings in previous studies (e.g., various types and budgets of
perturbations). Therefore, we comprehensively investigate the
effectiveness of AT against backdoor attacks across different
settings of AT and backdoor attacks.

After conducting extensive experiments, we find:
1) AT with spatial perturbations (spatial AT) [35] effectively
mitigates patch-based backdoor attacks at the cost of a
slight accuracy (ACC) drop; 2) AT with L p perturbations
(L p AT) [23] effectively mitigates whole-image backdoor
attacks; and 3) training with adversarial perturbations still
outperforms training with random perturbations or mixup
augmentations, while recent works [4], [5] claimed that some
data augmentations could mitigate backdoor behavior. Note
that the first two items are overlooked in a prior study [33]
that mainly focused on the experiments with L∞ AT and
patch-based backdoor attacks.

Furthermore, we explore how to adapt adversarial pertur-
bation to further improve backdoor robustness. We find that
combining adversarial perturbation with a slight amount of
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random perturbation can enhance the model’s ACC on clean
data, while also maintaining its ability to mitigate backdoors.
Finally, we propose a hybrid strategy (i.e., integrating multiple
adversarial perturbations) to help practitioners effectively
tackle backdoor attacks. Our work is related to a recent
work [27] which attempts to prevent delusive attacks (usually
invisible) with AT. However, our findings are more general
since we explore the possibility of AT against both visible
and invisible backdoor attacks.

Our Contributions: We provide a systematic evaluation of
backdoor attacks with AT and identify effective adversarial
perturbations which mitigate specific backdoor attacks. Our
observations suggest that AT with a suitable type of
perturbation benefits backdoor robustness. Then we explore
how to improve the natural ACC while maintaining the defense
ability via combining adversarial perturbation with a slight
amount of random perturbation. Finally, we propose a hybrid
strategy to tackle backdoor attacks in practice and demonstrate
its effectiveness with the comparison of baseline backdoor
defense methods.

II. BACKGROUND AND PRELIMINARY

AT varies across the types of perturbations, which also
affects defense against backdoor attacks. We first introduce
different types of AT and then discuss different types of
backdoor attacks involved in this article.

A. AT With Different Types of Perturbations
AT can be categorized according to the definition of B(xi )

and how to solve the inner maximization in (1). This article
mainly considers the following types of AT:

1) L p AT [23]: L p perturbation is most common and has
been extensively studied [2], [23], [26], [31], [34], [38], [40],
[41]. We require the perturbation is not larger than ϵ in the
L p-norm, i.e., B(xi ) = {x ′i | ∥x

′

i−xi∥p ≤ ϵ}. Usually, we adopt
the projected gradient descent (PGD) method to solve the
inner maximization, as suggested in [23]. This article considers
p = ∞ and p = 2 that are commonly used in previous
research.

2) Spatial AT [35]: To create more distinguishable
adversarial examples, Xiao et al. [35] proposed spatially
transformed examples by changing the positions of pixels
rather than directly modifying pixel values. In spatial AT, the
inner objective is a sum of a classification loss and a spatial
movement loss. In our work, a slight difference with [35]
is that we solve the inner maximization with the first-order
optimization rather than the limited memory-Broyden Fletcher
Goldfarb Shanno (L-BFGS) solver [20] in the original paper
as GPU acceleration is not available for the L-BFGS solver.

B. Backdoor Attacks
In backdoor attacks, an adversary can poison a fraction

of training data via injecting a predefined trigger pattern
and relabeling them as target labels (dirty label setting) or
only poisoning the samples in the target class (clean label
setting). After training, a backdoored model will predict the
predefined target label whenever the trigger patterns appear
on the image. According to the trigger shapes, we divide
backdoor attacks into the patch-based attack (trigger is
a local patch) and the whole-image attack (trigger is a

perturbation over the entire image). To avoid confusion about
backdoor and adversarial attacks, we hereby briefly discuss the
difference between backdoor and adversarial attacks. In terms
of occurring phase, backdoor attacks occur in the training
phase and are activated in the test phase, while adversarial
attacks only occur in the test phase. In terms of perturbation
type, backdoor attacks include visible patch triggers and
invisible perturbation triggers, while adversarial attacks are
usually invisible. We introduce six representative attacks as
follows.

1) BadNets [12]: The simplest way is to patch a predefined
pattern (e.g., a checkerboard) on an image. In such a case, the
triggered sample x̃ can be calculated as x̃ = (1−m)⊙x+m⊙t ,
where ⊙ denotes the elementwise multiplication, x ∈ Rd is
the benign sample, t ∈ Rd is the predefined trigger pattern, 1
is a d-dimensional all-one mask, and m ∈ {0, 1}d is a binary
mask that determines the trigger injecting region. We consider
2 × 2, 3 × 3, 4 × 4, and 5 × 5 checkerboard trigger in our
experiments.

2) Label Consistent (LC) Attack [29]: To boost the
performance of BadNets under the clean label setting,
Turner et al. [29] proposed to add L p adversarial perturbations
to the poisoned samples with an independently trained model.
Specifically, we use a four-corner trigger, as suggested in [29].

3) Trojan Attack [22]: Without access to the original
training data, [22] devised a set of external data and generated
a Trojan trigger by reversing the neurons. The external data
attached with the Trojan trigger are used to retrain the model
for Trojan attack.

4) SIN [3]: To make the trigger perceptually invisible, [3]
added the sinusoidal (SIN) backdoor signal to the original
image.

5) Blended Attack [7]: A trigger patch (e.g., a checker-
board) in BadNets is easy to be detected. To achieve
stealthiness, [7] instead blended the benign image with a
trigger pattern t , i.e., x̃ = (1− α) · x + α · t , where α ∈ (0, 1)

is the transparency parameter concerned with the visibility
of the trigger pattern. We consider a Hello-Kitty trigger with
α = 0.05, 0.1, 0.15, 0.2 in our experiments.

6) WaNet [25]: To make the trigger unnoticeable,
WaNet uses a smooth warping field to generate poisoned
inputs.

Among them, BadNets, LC, and Trojan are patch-based
attacks and blended, SIN, and WaNet are whole-image attacks.
We illustrate the poisoned samples in Fig. 1.

III. EVALUATION OF BACKDOOR
VULNERABILITY UNDER AT

In this section, we conducted extensive experiments to
explore how AT impacts backdoor robustness.

A. Experiments on CIFAR-10

1) Experimental Settings on CIFAR-10:
a) Backdoor attacks: We evaluated six backdoor attacks

on CIFAR-10: BadNets with a 3 × 3 checkerboard trigger,
LC, Trojan, blended with a Hello-Kitty trigger (α = 0.1),
WaNet, and SIN in Section II-B. Following prior works [33],
we adopted the clean label setting for BadNets, which means
we only poisoned the images belonging to the target class,
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Fig. 1. Illustrations of poisoned samples on CIFAR.

Fig. 2. Results on various backdoor attacks with various ATs on CIFAR-10.

while five other attacks were implemented based on the
original attack settings. The poison rate was 0.5% for BadNets
and LC, 1% for Trojan and SIN, and 5% for blended and
WaNet.

b) AT budgets: The perturbation budget range for L∞ AT
was from 4/255 to 16/255, and the budget for L2 AT was from
64/255 to 512/255, respectively. As for spatial AT, the budget
was defined as the L∞ distance between the parameters of
adversarial transformation and those of identity transformation
and it ranged from 0.025 to 0.1.

c) Training settings: The normally and adversarially
trained ResNet-18 [13] models were obtained using an
SGD optimizer for 100 epochs with the momentum 0.9,
the weight decay 5 × 10−4, and the initial learning rate
0.1 which was divided by 10 at the 60th and 90th epochs.
We also used random crop and random horizontal flips during
training.

2) Evaluation Metrics: In our experiments, we report the
clean ACC, which is the percentage of clean samples that are
correctly classified, and the attack success rate (ASR), which
is the percentage of triggered samples that are predicted as the
target label.

To analyze the results more clearly, we leave the
analysis on patch-based backdoor attacks and whole-
image backdoor attacks in Sections III-B and III-C,
respectively.

B. On the Effectiveness of Spatial AT Against Patch-Based
Backdoor Attacks

We mainly focus on the results on patch-based backdoor
attacks (BadNets, LC, and Trojan) and provide some findings
on how to mitigate patch-based backdoor attack.

1) Effect of L p AT on Patch-Based Backdoor Attack Varies
With Different Perturbation Budgets: In Fig. 2, we observe
that when ϵ ≤ 12/255, the ASR increases with larger
perturbation budgets in commonly used L∞ AT models, which
is consistent to the phenomenon that AT indeed strengthened
backdoor robustness in [33]. However, if the perturbation
budget continues to increase (ϵ > 16/255), the ASR starts
to decrease, which means AT could still mitigate backdoor
behavior as long as the perturbation budget is large enough.
Therefore, the findings in [33] are actually incomplete, since
they ignored the effects of perturbation budgets.

2) Spatial AT Effectively Mitigates Patch-Based Backdoor
Attacks: As shown in Fig. 2, even though the ACC drops to
∼80% in L∞ AT with ϵ = 12/255, the ASR still achieves
100%. Only when we enlarged the perturbation budget to
ϵ = 16/255 with only ∼70% of ACC, we obtain satisfactory
backdoor robustness (close 0% of ASR). Interestingly,
we could easily achieve ∼85% of ACC and ∼0% of ASR via
spatial AT (budget ϵ = 0.025). The results on LC and Trojan
attack also verify the effectiveness of spatial AT. We conjecture

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2023 at 11:20:29 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 3. Illustrations of original examples and spatial adversarial examples. We could find that spatial adversarial transformation severely destroys trigger
patches.

that spatial adversarial transformation can easily distort the
trigger pattern (see samples in Fig. 3), making the trained
model keep the prediction unchanged in the presence of the
trigger pattern.

3) More Validations on BadNets With Different Poison
Rates/Attack Types/Patch Sizes: In Fig. 2, we only consider
the experiments on BadNets with poison rate 0.5% under clean
label attack setting. To validate the effectiveness of spatial
AT against BadNets, we further conducted experiments with
various poison rates under both clean and dirty label attack
settings. The ASR curves are reported in Fig. 4(a) and (b)
(we omit the ACC curves as they are similar to those in
Fig. 2). We observe that when tackling clean label BadNets,
spatial AT with small perturbations (ϵ = 0.025 or 0.05)
shows significant effects to mitigate backdoors. For dirty label
BadNets, spatial AT with ϵ = 0.075 handles most cases,
except that the poison rate is increased to 10%. However,
we argue that it is difficult for the adversary to manipulate too
much training data in real scenarios, and a recent work poisons
only 0.01% in a training dataset to achieve successful backdoor
attacks [6]. For BadNets, the patch size is created manually
with the consideration of the tradeoff between effectiveness
and stealthiness. We varied the patch size in our experiments
and depict the results in Fig. 4(c), from which we find
that spatial AT with ϵ = 0.05 largely decreases backdoor
ASRs. We thus summarize that spatial AT shows competitive
performances when tackling patch-based attacks.

C. On the Effectiveness of L p AT Against Whole-Image
Backdoor Attacks

We mainly focus on the results of whole-image backdoor
attacks (blended attack, WaNet, and SIN) and draw insights
into mitigating whole-image backdoor attack.

1) L p AT Effectively Mitigates Whole-Image Backdoor
Attack: As shown in Fig. 2, when tackling blended attack, L∞
AT with ϵ = 4/255 and L2 AT with ϵ = 128/255 significantly
decrease backdoor ASR (close ∼0%). Spatial AT, however,
cannot effectively remove backdoor behavior even with a
relatively large perturbation budget ϵ = 0.1. When tackling
SIN, L∞ AT with ϵ = 12/255 decreases backdoor ASR
to ∼0% and meanwhile maintains ∼78% clean ACC while
spatial AT cannot effectively remove backdoor behavior.
In addition, WaNet [25], a state-of-the-art (SOTA) backdoor
attack, is fragile and easily mitigated by L p or spatial

adversarial perturbations, which reminds researchers of not
only considering the stealthiness of backdoor attacks but also
their durability and persistence against backdoor defenses.

2) More Validations on Blended Attack With Different
Mixing Parameters: In Fig. 2, we only consider the
experiments on α = 0.1 in blended attack. We varied the
mixing parameter to observe the ASR results with L∞ AT.
In Fig. 4(d), we find that L∞ AT with ϵ = 8/255 could almost
mitigate backdoor behaviors (α ≤ 0.15) or at least largely
decreases backdoor ASR (α = 0.2). We thus summarize that
L p AT shows competitive performances when tackling whole-
image attacks.

D. AT Is More Effective Than Other Data Augmentations

We further validate the effectiveness of AT with the
comparison of other data augmentations.

1) Comparing to Random Perturbations: From the findings
above, AT indeed provides robustness against backdoor attacks
at the cost of extra forward and backward propagation to
calculate adversarial perturbations, which is time-consuming.
Naturally, if we could apply random perturbations to
mitigate backdoor vulnerability, the overhead from random
perturbations is almost neglected. Here, we explore whether
random perturbations to input could defend against backdoor
attacks or not. Specifically, we trained models with randomly
perturbed inputs with varying budgets and compared them
with adversarially trained models. Given the L∞ perturbation
budget ϵ, we generate the randomly perturbed data with:
xrand = x + v, where v ∈ {−ϵ, ϵ}d and vi (the i th
dimension of v) is uniformly sampled from {−ϵ, ϵ}. Then
we clip xrand into valid pixel ranges. The random spatial
perturbations are generated based on similar principles, except
that the perturbation is operated on the affine transformation
parameters rather than the raw data. Here we compare the
results of blended attacks with L∞ perturbation and the results
of BadNets with spatial transformation. As shown in Table I,
for blended attacks, within a fixed perturbation budget, the
worst case perturbation always leads to a much lower backdoor
ASR than random perturbation. Next, we focus on L∞ AT
with ϵ = 4/255 and random perturbation with ϵ = 16/255,
as both the models have similar clean accuracies (∼87%).
At this point, L∞ AT has successfully mitigated backdoor
attacks (the ASR is below 5%) while the randomly perturbed
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Fig. 4. More evaluations on BadNets and blended attacks. (a) and (b) Results of BadNets with spatial AT under clean and dirty label attack settings,
respectively. (c) Results of BadNets with various patch sizes under dirty label attack setting. (d) Results of blended attack with various mixing parameters.

TABLE I
ACC (%) AND ASR (%) FOR RANDOM L∞ PERTURBATIONS OF VARIOUS BUDGETS ON BLENDED ATTACKS

TABLE II
ACC (%) AND ASR (%) FOR RANDOM SPATIAL TRANSFORMATIONS OF VARIOUS BUDGETS ON BADNETS

TABLE III
ACC (%) AND ASR (%) ON CLEAN LABEL BADNETS WITH A NORMALLY

TRAINED BACKDOORED MODEL, A MODEL TRAINED WITH MIXUP OR
CUTMIX, AND A SPATIALLY TRAINED MODEL (ϵ = 0.025)

model does not (the ASR is 30.96%). Similar observations
also hold for BadNets with spatial transformation in Table II.
Then, we conclude that adversarial perturbations are superior
to random perturbations in terms of backdoor robustness.

2) Comparing to Mixup and Cutmix: We also compared
the adversarially trained backdoored models with the models
trained with mixup [39] and cutmix [36] augmentations since
recent works [4], [5] have shown that both the techniques
eliminate backdoor attacks to some extent. We conducted
experiments on BadNets under both clean and dirty label
settings. The results are summarized in Tables III and IV, from
which we could find that although mixup and cutmix weaken
clean label attacks, the results are far from satisfactory when
tackling dirty label attacks.

TABLE IV
ACC (%) AND ASR (%) ON DIRTY LABEL BADNETS WITH A NORMALLY

TRAINED BACKDOORED MODEL, A MODEL TRAINED WITH MIXUP OR
CUTMIX, AND A SPATIALLY TRAINED MODEL (ϵ = 0.025)

E. Toward Relaxation of AT Without Affecting the
Effectiveness of Backdoor Mitigation

We further explore the potential relaxation of AT to improve
the natural generalization but do not affect backdoor mitigation
effect.

1) Relaxation of Adversarial Perturbation: We elaborate
the relaxation method with the L∞ perturbation as the
example. The relaxed adversarial data x ′ are derived as
follows:

gl(x; ϵ, β) = x + β · u + (1− β) · v

where u is the adversarial perturbation, β is the balancing
parameter, and v is the random perturbation whose generation
is the same as that in Section III-D. The obtained data
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with gl(x; ϵ, β) are then clipped into valid pixel ranges.
When β = 1, the computation above is the same as the
adversarial data generation procedure. The relaxation method
for spatial adversarial transformation is similar, and we denote
the generation function as gs(x; ϵ, β).

2) Slight Relaxation Benefits Natural Generalization and
Preserves Backdoor Mitigation Effect: We conducted exper-
iments with different β values. We consider dirty label
BadNets, LC, blended attack, and WaNet in our experiments.
As shown in Tables V and VI, we find that when β = 0.9,
that is, we slightly weight the adversarial perturbation with
the random perturbation, backdoor ASR changes little with
the increase in clean ACC (about 1% or 2%). However,
in most cases, when β is increased to 0.6, we find that the
relaxed adversarial perturbation is not effective to mitigate
backdoor attacks anymore. We thus summarize that combining
adversarial perturbation with a light amount of random
perturbation could improve natural ACC and maintain the
defense ability.

IV. COMPOSITE AT
In this section, we combine our findings in Section III and

propose a hybrid strategy to tackle unknown backdoor attacks.

A. Integration of Multiple Adversarial Perturbations
In real scenarios, we have no knowledge about the

trigger pattern. Therefore, we propose composite AT (CAT)
which integrates two effective adversarial perturbations: spatial
adversarial transformation and L∞ adversarial perturbation,
the former for mitigating the patch-based backdoor attacks and
the latter for whole-image backdoor attacks. Besides, we also
use the relaxation trick to boost clean ACC. We elaborate the
design of CAT as follows.

Step 1 (Incorporating Relaxed Spatial Adversarial Perturba-
tion): To eliminate patch-based backdoor attacks, we perturb
the given data with spatial adversarial transformation. Given
a training sample {x, y}, the flow-field T parameterized with
w ∈ Rd×2 is optimized as follows:

w∗ = arg max
∥w−γ ∥∞≤ϵ

ℓ(T (x, w), y; θ)

where γ denotes the parameters of identity flow field. Then
we relax w∗ with the random transformation

w̃ = β · w∗ + (1− β) · τ

where τ denotes the parameters of random flow field, and
τ = γ + ζ, ζ ∈ {−ϵ, ϵ}d×2. The input x is transformed by the
following equation:

x ′ = T (x, w̃). (2)

Step 2 (Incorporating Relaxed L∞ Adversarial Perturba-
tion): To eliminate whole-image backdoor attacks, we perturb
{x ′, y} with L∞ adversarial perturbation. L∞ adversarial
perturbation is optimized as follows:

ϵ∗ = arg max
∥ϵ∥∞≤ϵ

ℓ( fθ (x ′ + ϵ)y).

We relax the adversarial perturbation u with random
perturbation v ∈ {−ϵ, ϵ}d

ϵ̃ = β · ϵ∗ + (1− β) · v.

Algorithm 1 Composite Adversarial Training
Input:

training data D = {(xi , yi )}
n
i=1, spatial transformation

budget ϵs , L∞ perturbation budget ϵl , loss function ℓ(·),
batch size B, total epochs T , balancing parameter β,
classifier fθ ;

Output:
Classifier fθ ;

1: θ ← θ0, t ← 0;
2: while t < T do
3: Sample a mini-batch data {xi , yi }

B
i=1 from D;

4: Compute relaxed spatial adversarial data
{

x ′i , yi
}B

i=1
according to (2);

5: Compute relaxed L∞ adversarial data
{

x ′′i , yi
}B

i=1
according to (3);

6: Update θ ← θ − 1
B

∑B
i=1▽θℓ( fθ (x ′′i ), yi );

7: t ← t + 1;
8: end while
9: return fθ ;

The final input is obtained by the following equation:

x ′′ = x + ϵ̃. (3)

The training pair {x ′′, y} is used for optimizing the model with
standard gradient descent methods.

The detailed procedure can be found in Algorithm 1.
We note that there are a few works [24], [28] attempting
to incorporate multiple perturbation models in standard AT.
However, the motivation is totally different: we aim to mitigate
unknown backdoor attacks rather than defend against multiple
types of adversarial examples. We empirically demonstrate the
effectiveness of CAT over recent baseline defense methods.

1) Experimental Settings on CIFAR-10: We used ϵl =

4/255 for L∞ AT and ϵs = 0.05 for spatial AT, considering the
tradeoff between natural ACC and robustness. We evaluated
our method on CIFAR-10 against the six SOTA backdoor
attacks. Besides, for each adversarial attack, we use the relaxed
trick with β = 0.8. We evaluated six backdoor attacks on
CIFAR-10: BadNets, LC, Trojan, blended, WaNet, and SIN.
The poison rate was 1% for BadNets, LC, and SIN, 5% for
blended and WaNet, and 0.2% for Trojan.

2) Baseline Methods: We compared CAT with a series
of backdoor defense methods: fine pruning (FP) [21],
neural attention distillation (NAD) [16], differentially private
stochastic gradient descent (DPSGD) [14], and anti-backdoor
learning (ABL) [15]. We grid-searched the pruning ratio for
FP, from 5% to 95% with step 5%, and chose the result whose
clean ACC is closest to ours for a fair comparison. For NAD,
we followed the original settings but set the initial learning
rate to 0.01 for more stable results. For DPSGD, we replaced
batch normalization with group normalization to obey the rule
of differential privacy and set the noise level σ to 0.1. For
ABL, we adopted the same settings in its paper except for the
loss threshold γ , which we set to 0 for a better detection rate.

3) Results on CIFAR-10: As shown in Table VII, we find
that CAT shows competitive performance in most cases, which
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TABLE V
ACC (%) AND ASR (%) OF RELAXED L∞ PERTURBATION ON BLENDED ATTACKS AND WANET

TABLE VI
ACC (%) AND ASR (%) OF RELAXED SPATIAL ADVERSARIAL TRANSFORMATION ON BADNETS AND LC

TABLE VII
ACC (%) AND ASR (%) OF VARIOUS BACKDOOR DEFENSE METHODS ON CIFAR-10. THE LOWEST ASR IS INDICATED IN BOLDFACE

AND THE SECOND-LOWEST ASR IS INDICATED WITH AN UNDERLINE

TABLE VIII
ACC (%) AND ASR (%) OF VARIOUS BACKDOOR DEFENSE METHODS ON CIFAR-100. THE LOWEST ASR IS INDICATED IN

BOLDFACE AND THE SECOND-LOWEST ASR IS INDICATED WITH AN UNDERLINE

demonstrates the effectiveness of the composite strategy.
Compared with FP and NAD, a major advantage is that
CAT does not need extra clean data, which leads to wider
applications as clean data may be hard to collect in some
areas. Compared with DPSGD and ABL, CAT achieves more
stable and better results in terms of backdoor robustness. CAT

decreases almost all backdoor ASR lower than 10% except
SIN (the ASR of SIN is also largely decreased). We attribute
the results to the difference in the technical strategy. Although
the three methods (DPSGD, ABL, and CAT) aim to train
clean models with poisoned data from scratch, ABL identifies
the candidates of poisoned data in the early training stage
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TABLE IX
ACC (%) AND ASR (%) OF VARIOUS BACKDOOR DEFENSE METHODS ON IMAGENET SUBSET. THE LOWEST ASR IS INDICATED

IN BOLDFACE AND THE SECOND-LOWEST ASR IS INDICATED WITH AN UNDERLINE

TABLE X
ACC (%) AND ASR (%) OF CAT WITH DIFFERENT β VALUES ON CIFAR-10

TABLE XI
ACC (%) AND ASR (%) OF BADNETS WITH DIFFERENT POISON RATES ON CIFAR-10

Fig. 5. t-SNE visualizations of standardly trained models and CAT models.
(a) BadNets, ST. (b) Blended, ST. (c) BadNets, CAT. (d) Blended, CAT.

and forgets them later. However, the ACC of detecting the
poisoned data and the gradient ascent used in ABL tend
to cause the training instability, which will not happen in

Fig. 6. Illustrations of poisoned samples on ImageNet. (a) BadNets.
(b) Blended.

CAT as we only perturb the training data with imperceptible
noise. DPSGD perturbs gradients with noise to minimize the
difference between clean gradients and poisoned ones. The
perturbation leads to a significant drop in the clean ACC, and
yet does not provide meaningful guarantees. One limitation of
CAT is that the adversarial perturbations lead to clean ACC
drop, which is universal in AT methods, and we leave the
improvements for our future work.
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Fig. 7. Results on various backdoor attacks with various ATs on CIFAR-100.

4) Experimental on CIFAR-100 and ImageNet Subset: For
CIFAR-100, we evaluated four backdoor attacks: BadNets with
a 3 × 3 checkerboard trigger, LC, blended with a Hello-Kitty
trigger, and WaNet. We adopted the clean label setting for
BadNets while three other attacks were implemented based on
the original papers. The poison rate was 0.3% for BadNets and
LC, 3% for blended, and 5% for WaNet. For all the attacks,
class 2 was assigned as the target class. For ImageNet subset,
we evaluated two backdoor attacks: BadNets and blended. The
poison rate is 5% for BadNets and blended. The results are
summarized in Tables VIII and IX, from which we could
find that CAT also shows competitive results over baseline
methods.

5) Experiments With Various β Values: We also conducted
experiments with β = 1.0 and β = 0.9. The results are
summarized in Table X, from which we could find that CAT
with β = 1.0 and β = 0.9 also effectively mitigates backdoor
attacks but clean accuracies are slightly lower than those of
CAT with β = 0.8.

6) Experiments With Various Poison Rates: We also
conducted experiments on BadNets with various poison rates.
The results are summarized in Table XI, from which we could
find that when poison rate is increased to 5% or 10%, CAT
could not completely mitigate backdoor behavior but also
largely decrease backdoor ASRs.

7) t-SNE Visualizations: To further understand the model’s
internal response with respect to backdoor triggers, we provide
the t-SNE visualizations [30] of standardly trained (ST)
models and CAT models with BadNets and blended attacks
on the CIFAR-10 dataset. The training configurations are the

Fig. 8. Results on various backdoor attacks with various ATs on ImageNet
subset.

same with those in Section III, and the results are illustrated
in Fig. 5. As shown in Fig. 5, we could find that the poisoned
samples form an individual cluster in ST models, yet fail in
CAT models.
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V. CONCLUSION AND SOCIETAL IMPACT

In this work, we conducted thorough experiments to inves-
tigate the effects of AT on backdoor attacks. We found that
previous studies overlooked the influences of the perturbation
type and budget of AT. Furthermore, we demonstrated that AT
effectively mitigates backdoor attacks across various cases.
We then explored the potential relaxation of adversarial
perturbation and proposed composite AT to address unknown
backdoor attacks. Through extensive experiments, we provided
several important insights when tackling backdoor attacks with
AT and itemized them in the table. We believe that our work
sheds light on the understanding of the interactions between
AT and backdoor attacks and reminds researchers that AT
is still an effective defense against backdoor attacks. As for
societal impact, our method will benefit backdoor robustness
and prevent the adversary from injecting triggers. However,
we do not want this article to bring an overly optimistic view
of AI safety, since the backdoor attack is only one concern
while there are various potential risks including adversarial
attacks, privacy breaches, and model extraction.

Messages:
(i) Spatial AT effectively mitigates patch-based
backdoor attacks;
(ii) L p AT effectively mitigates whole-image
backdoor attacks;
(iii) Adversarial perturbation is superior to random
perturbation and mixup augmentations;
(iv) Adversarial perturbation can be slightly relaxed
to improve natural generalization but does not affect
backdoor mitigation effects;
(v) We make it possible to defend against unknown
backdoor attacks with merely data augmentations
(i.e., integrating multiple adversarial perturbations).

APPENDIX

A. Experiments on CIFAR-100 and ImageNet

1) Experimental Settings for CIFAR-100:
a) Backdoor attacks: For CIFAR-100, we evaluated four

backdoor attacks: BadNets with a 3 × 3 checkerboard trigger,
LC, blended with a Hello-Kitty trigger (α = 0.1), and WaNet.
The poison rate was 0.5% for BadNets and LC, 3% for
blended, and 5% for WaNet. For all the attacks, class 2 was
assigned as the target class.

b) AT budgets: The perturbation budget for L∞ AT
ranges from 4/255 to 16/255. The perturbation budget for L2
AT ranges from 64/255 to 512/255. The perturbations budget
for spatial AT ranges from 0.025 to 0.1.

2) Experimental Settings for ImageNet:
a) Backdoor attacks: We randomly selected ten classes

to create a subset and evaluated two backdoor attacks: BadNets
with a 10 × 10 trigger and blended with a random trigger
(α = 0.1). We adopted dirty label BadNets since we find that
the ASR of clean label BadNets is lower than 20%. The poison
rate was 5% for BadNets and blended. For all the attacks,

class 0 was assigned as the target class. The poisoned samples
are illustrated in Fig. 6.

b) AT Budgets: The perturbation budget for L∞ AT
ranges from 4/255 to 16/255. The perturbation budget for
L2 AT ranges from 512/255 to 4096/255. The perturbation
budget for spatial AT ranges from 0.025 to 0.1.

3) Results: The results are summarized in Figs. 7 and 8.
We find that L p AT effectively mitigates whole-image
backdoor attacks and spatial AT effectively mitigates patch-
based backdoor attacks, which is consistent with the
conclusion in CIFAR-10.
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